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Abstract
We derive effective interaction potentials between hard, spherical colloidal
particles and star-branched polyelectrolytes of various functionalities f and
smaller size than the colloids. The effective interactions are based on a
Derjaguin-like approximation, which is based on previously derived potentials
acting between polyelectrolyte stars and planar walls. On the basis of these
interactions we subsequently calculate the demixing binodals of the binary
colloid–polyelectrolyte star mixture, employing standard tools from liquid-state
theory. We find that the mixture is indeed unstable at moderately high overall
concentrations. The system becomes more unstable with respect to demixing as
the star functionality and the size ratio grow.

1. Introduction

Polyelectrolyte stars (PEs) are complex macromolecules that have attracted a lot of interest
in the recent past. They consist of f polymer chains, all attached to a common centre, and
carrying ionizable groups along their backbones. Solution of these molecules in a polar solvent
results into dissociation of the groups, so that the chains turn into polyelectrolytes and stretch
considerably with respect to their neutral conformations. Already by the early 1990s, the
importance of the stretched PE-chains in stabilizing colloidal suspensions had been pointed out
and analysed theoretically by Pincus [1], employing scaling theory, as well as more recently by
Wang and Denton [2] using linear-response theory. A distinguishing feature of PE-stars is their
ability to adsorb the vast majority of the released counterions into their interior, creating thereby
an inhomogeneous cloud of entropically trapped particles that provides a strong entropic barrier
against coagulation [1–9]. The development of accurate effective interactions between the PE-
stars [6–9] has led to predictions regarding their overall phase behaviour with emphasis on
crystallization [10, 11], which has recently received experimental corroboration [12].

Though a great deal has thus been learned regarding the behaviour of one-component
solutions of PE-stars, the question of the influence of these ultrasoft colloids on solutions of
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hard colloids has not been investigated thus far. At the same time, the behaviour of PE-stars in
the vicinity of planar or curved hard surfaces (such as a larger colloidal particle) is an issue of
considerable interest, due to the possibility of manipulating the conformation of the PE-star by
suitably changing the geometry or physical characteristics of the surface [13–15]. Recently,
the properties of PE-stars close to hard, planar walls were investigated in detail by means
of computer simulations and theory [16]. It has been found that the geometrical constraint
of the planar wall does not affect the ability of the PE-stars to absorb the vast majority of
their counterions. In addition, a new mechanism giving rise to a wall–star repulsion has
been discovered, which rests on compression of stiff star chains against the neighbouring
wall. In this work, we proceed to the full, many-body problem of a collection of PE-stars
and neutral colloids, which can be seen as curved walls. Based on the results of [16], we
investigate the structure of the mixture and find that it is unstable against demixing as the
concentration becomes sufficiently high. This work serves, thereby, as the reference point
for future investigations on the effects of adding charge to the colloidal particles. It is
complementary to recently published work on mixtures of charged colloids with uncharged
polymers [17], since in our case the colloids are neutral and the (star-branched) polymers are
charged.

The rest of this paper is organized as follows: in section 2 we introduce the colloid–
colloid and PE-star–PE-star effective interactions and we derive the cross interaction, based on
previous results on the PE-star interaction potential with a planar wall. In section 3 we present
our method for calculating structure and thermodynamics by employing the aforementioned
interactions in combination with two-component liquid integral equation theories. In section 4
we present our results for various regimes of the parameter space as well as the overall phase
diagrams of the mixture. Finally, in section 5, we summarize and draw our conclusions.

2. Effective pair potentials

The system under investigation is a binary colloid–PE-star mixture. The colloids are coded
with the subscript ‘c’ and the PE-stars with ‘s’. The mixture contains, thus, Nc spherical,
neutral colloids with diameter σc (radius Rc) and Ns PE-stars in aqueous solution. The stars can
be characterized by their degree of polymerization Np, functionality f and charging fraction
α. Thereby, the f chains of each star are charged in a periodical manner in such a way that
every (1/α)th monomer carries a charge e. As a result, every star carries a total bare charge
Q = eα f Np, leaving behind M = α f Np monovalent, oppositely charged counterions in the
mixture due to the requirement that the system must remain electro-neutral as a whole. With σs

referring to the stars’ diameter, i.e. twice the average centre-to-end distance Rs of the arms, we
define the size ratio q between the two species as

q = σs/σc. (1)

Within this work, we will only consider PE-stars that are smaller than the colloids, hence q < 1.
The degree of polymerization of every arm, Np, and the charging ratio α play a crucial role
because they determine the number of released counterions M mentioned above. The latter
are, in turn, mainly responsible for the emergence of the star–star [1, 7, 8] and the star–colloid
effective repulsions [16], due to the loss of entropy they experience when two such objects
approach close to each other (see also equation (3) in what follows). In this work, we fix
Np = 50 and α = 1/3 throughout. Generalizations to other values of α and Np can follow by
appropriately taking into account the dependence of M on these parameters. Thereby, the two
remaining single-molecule parameters that we vary are the stars’ functionality f and the size
ratio q .
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The thermodynamic parameters are the partial number densities ρi = Ni /V (i = c, s)
of the respective species and the absolute temperature T . Alternatively, we can work with the
concentrations xi = Ni /N and the total number density ρ = N/V , with the total particle
number N = Nc + Ns in the overall volume V of our model system. We will consider constant
room temperature (T = 300 K) throughout this work. This is the temperature for which the
star–star effective interactions [7, 8] and the PE-star–planar wall potentials [16] have been
derived, based on the value λB = 7.1 Å for the Bjerrum length in aqueous solvents. As usual,
we define the inverse thermal energy β = 1/(kBT ), with kB denoting Boltzmann’s constant.

The starting point for all considerations to follow is the effective pair potentials between
the constituent mesoscopic particles, having integrated out all the monomer, solvent and
counterions degrees of freedom. When introducing this set of interactions as an input quantity
into the full two-component integral equation theory described in more detail in section 3, we
can in principle completely access the structure and thermodynamics of the system at hand.

2.1. The colloid–colloid and PE-star–PE-star interactions

The effective colloid–colloid interaction at centre-to-centre distance r is simply taken to be a
pure hard sphere (HS) potential, namely:

βVcc(r) =
{

∞ r � σc;

0 else.
(2)

A lot of work concerning effective PE-star–PE-star interactions was done in the recent
past by Jusufi and co-workers [7, 8]. They employed monomer-resolved molecular dynamics
(MD) simulations and analytical theories and found an ultra-soft, bounded, density-dependent
effective interaction governed by the entropic repulsions of counterions trapped in the interior
of the stars. The good agreement between simulations and theory even allowed them to put
forward analytical expressions for the full pair potential at arbitrary star separations. The
effective potential has a weak density dependence, but this disappears when the star density
exceeds its overlap value ρ∗

s . In this case, all counterions are absorbed within the stars, whose
bare charges are therefore completely compensated. Thus, the effective potential vanishes
identically for centre-to-centre distances r > σs. For overlapping distances r � σs, there is no
longer any dependence on the concentration and only the entropy of the trapped counterions
contributes to the star–star interaction, for this reason reading for r � σs ≡ qσc as [7, 8, 10, 11]:

βVss(r)

2N2
= ln

⎧⎨
⎩ N2

2π
[
1 + r

qσc

(
1 − ln

(
r

qσc

))]
⎫⎬
⎭ +

r
qσc

ln2
(

r
qσc

)
1 + r

qσc

(
1 − ln

(
r

qσc

)) − ln

(
N2

4π

)
. (3)

In equation (3) above, N2 is the number of spherically trapped counterions of a single star.
This does not coincide with the number of released counterions, M , because the number N1

of Manning-condensed counterions [18, 19] does not contribute to the effective interaction and
must be excluded: thus N2 = M − N1. Extensive simulations [7, 8, 16, 20] have shown that
the relative population of counterions in the two possible states is essentially independent of
r . Thus, we fix N1 to the value measured in MD simulations made during the investigation of
PE-stars in planar confinement [16]. The fraction N1/M typically grows with increasing α and
covers ranges between 30% and 50%.

Clearly, the interaction Vss(r) of equation (3) vanishes, along with its first derivative with
respect to r , at r = qσc, guaranteeing the smooth transition to the region r > qσc, in which
Vss(r) = 0. The latter feature is, strictly speaking, valid only for star densities exceeding
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Figure 1. PE-star (smaller, dashed sphere) interacting with (a) a planar wall or (b) a hard colloidal
particle (bigger, solid grey sphere).

the overlap value ρ∗
s [11]. For ρs < ρ∗

s , a Yukawa tail exists, emerging from the Coulomb
interaction between the non-neutralized PE-stars and screened by the free counterions. For
the purposes of simplicity, we ignore this small contribution, because the number of released
counterions from multi-arm PE-stars constitutes, at all densities, a tiny fraction of the total
number of counterions M [8], as confirmed by the very small values of experimentally
measured osmotic coefficients of PE-star solutions [21].

2.2. The cross interaction

In order to complete the set of effective pair potentials needed to describe the binary mixture
within the framework of a full two-component picture, we have to specify the colloid–PE-star
cross interaction. Thereby, we proceed along the lines of [22] to derive the desired potential
for small q-values based on results for the effective repulsion in the case where a PE-star is
brought within a distance z from a hard, flat wall [16, 20].

To begin with, let Vsw(z) be the star–wall interaction and Fsw(z) = −∂Vsw(z)/∂z the
corresponding force for a PE-star with all its counterions absorbed, i.e. for densities ρs beyond
the overlap density (see also previous section 2.1). Then, for the geometry shown in figure 1(a),
the force is related to the osmotic pressure 	(s) exerted by the star on the surface of the wall
via integration of the normal component of the latter along the area of contact [1]:

Fsw(z) = 2π

∫ ∞

0
dy y	(s) cos ϑ = 2πz

∫ ∞

z
ds	(s). (4)

Using the above equation (4), we can directly obtain the functional form for the osmotic
pressure 	(z), provided that the functional form for the star–wall force Fsw(z) is known:

	(z) = − 1

2π

d

dz

(
Fsw(z)

z

)
. (5)

The same ideas can in principle be applied for a PE-star in the vicinity of a spherical,
hard colloid, i.e. a hard sphere. Again, integrating the osmotic pressure along the area of
contact between both objects yields the force acting on the centres of the mesoscopic particles.
Pursuant to the geometry of the problem (see figure 1(b)), and paying regard to the underlying
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symmetry, we get as result for the colloid–PE-star cross force F∗
cs(z):

F∗
cs(z) = πσ 2

c

2

∫ θmax

0
dθ sin θ	(s) cos ϑ. (6)

Here, the upper integration boundary θmax can be acquired by the condition that 	(s) must
vanish identically for all θ > θmax. It is possible to eliminate the polar angles ϑ and θ emanating
from the centres of the PE-star and the colloid, respectively, in favour of the distance s between
the star centre and the point on the colloid’s surface that is determined by the aforementioned
angles. In doing so, we use geometrical relations evident from the sketch in figure 1(b), and
finally obtain:

F∗
cs(z) = πσc

2 (σc + 2z)2

∫ smax

z
ds

[
(σc + 2z)2 − σ 2

c + 4s2
]
	(s). (7)

Again, we may obtain the maximum integration distance smax (without any need to calculate
θmax before) simply by demanding that 	(s) must be equal to zero for all s > smax. For
such values of s, the integrand as a whole obviously vanishes and there are no longer any
contributions to the result of the integration. Presuming that the functional form for the osmotic
pressure is known, such identification of smax is easily feasible.

Since we want to consider small values q � 0.3 of the size ratio only, the stars discern the
colloidal surface to be rather weakly bent compared to a flat wall, i.e. the radius of curvature
is large in terms of the diameter of the star σs. Therefore, it is a reasonable approximation
to assume that the osmotic pressure remains almost unchanged with respect to the situation
where a PE-star is brought into contact with a planar wall. Consequently, we may combine
equations (5) and (7) to obtain a sound estimate for the effective force F∗

cs(z) as a function of
distance of the star centre and the colloid’s surface. Note that in our special case smax is of
the order of the star radius Rs. This fact becomes evident from equation (5) if one takes into
account that the typical range for the star–wall force Fsw(z) is also approximately Rs or at the
utmost slightly bigger due to effects of a chain compression at the hard wall (see below) [16].
Clearly, the corresponding potential is received by a simple, one-dimensional integration:

V ∗
cs(z) =

∫ z

∞
dz′ F∗

cs(z
′). (8)

In figure 2 we show the shape of V ∗
cs(z) for q = 0.2 and different values of the stars’

functionality f . In order to demonstrate the importance of the so-called compression
term adding to the star–wall force Fsw besides electrostatic–entropic contributions [16], we
additionally included colloid–star potentials calculated on the basis of the electrostatic and
entropic star–wall forces alone. Since there are striking deviations, we can clearly expect such
devolved compression effects to influence the phase behaviour of the mixture.

Finally, we need to express the effective potential as a function of the centre-to-centre
separation of the particles r instead of the centre-to-surface distance z. Thereby, we have
to take into account that the star centre is strictly forbidden to penetrate the volume of the
colloid. Thus, the total cross interaction features a hard core plus the soft, purely repulsive tail
as obtained from the above equation (8) and can finally be written as:

Vcs(r) =
{

∞ r � σc/2

V ∗
cs(r − σc/2) else.

(9)
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Figure 2. Effective colloid–PE-star potentials with and without provision for compression effects
as a function of the centre-to-surface distance z. Here, we have chosen the parameters q = 0.2 and
(a) f = 10, (b) f = 18 and (c) f = 30. In the legend boxes, the numbers of condensed counterions
N1 used as fit parameters in [16] are specified for sake of completeness.

3. Determination of the structure and thermodynamics of the mixture

In this section, we describe the basic principles of liquid integral equation theory for binary
mixtures1 and how to subsequently access the thermodynamics of the system. In general, the
pair structure of the system in hand (and analogously any other two-component system) is fully
described by three independent total correlation functions hi j(r) with i, j = c, s. Hereby, we
already allowed for the symmetry with respect to exchange of the indices, i.e. hi j(r) = h ji(r).
Closely related to the total correlation functions are the so-called direct correlation functions
ci j(r). Following the same symmetry argument again, there exist only three independent direct
correlation functions. In what follows, we will denote the Fourier transforms of hi j (r) and
ci j(r) as h̃i j(r) and c̃i j(r), respectively.

The above-mentioned connection between the total and direct correlation functions is
quantitatively incorporated via the multicomponent generalization of the well-known and
commonly used Ornstein–Zernike (OZ) relation, which in its Fourier space representation reads
as [23–25]:

H̃(k) = C̃(k) + C̃(k) · D · H̃(k). (10)

Here, H̃(k) and C̃(k) are symmetric (2 × 2) matrices whose elements are constituted by the
total and direct correlation functions, respectively, and D is a diagonal (2×2) matrix containing

1 A further generalization of the theoretical approach from ν = 2 to ν > 2 components in the mixture is
straightforward. But since we are only interested in binary systems within the framework of this paper, we limit
ourselves to that special case in order to keep the delineation as concise as possible.
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the partial densities characterizing the composition of the system under investigation, i.e.[
H̃(k)

]
i j

= h̃i j (k), (11)[
C̃(k)

]
i j

= c̃i j(k), (12)

[D]i j = ρiδi j . (13)

Evidently, equation (10) can be rewritten yielding the equivalent matrix relation

H̃(k) =
[
1 − C̃(k) · D

]−1 · C̃(k), (14)

with the identity matrix 1 and the matrix inverse [1 − C̃(k) · D]−1. Defining �(k) ≡
ρsρc[c̃ss(k)c̃cc(k) − c̃2

cs(k)] and E(k) ≡ ρsc̃ss(k) + ρcc̃cc(k) and returning to a component-
by-component notation, the latter can consistently be expressed in the following fashion:

h̃i j (k) = c̃i j(k) − ρ−1
i · �(k) · δi j

1 + �(k) − E(k)
. (15)

The linear algebraic system of equation (15) provides three independent equations
coupling six as yet unknown functions h̃i j (k) and c̃i j(k). In order to completely determine
that set of functions, we therefore need to supply three additional relations to close and
subsequently solve the system of equations. There are several popular choices for these so-
called closures, e.g. the Percus–Yevick (PY) or hypernetted-chain (HNC) approximations in
their respective two-component generalizations. While the former is known to generate reliable
results for short-range interactions, the latter furnishes very accurate estimates for the pair
structure in the case of long-ranged, soft potentials. Neither the PY nor the HNC closure are
thermodynamically consistent, however, and in our case this is a crucial factor, since we are
interested in the calculation of phase boundaries, which should not depend on the route chosen
to calculate the free energies. Thus, we resort to the Rogers–Young (RY) closure [26], in which
thermodynamic consistency can be enforced. In its multicomponent version the RY closure
reads as:

gi j(r) = exp
[−βVi j(r)

] ·
{

1 + exp
[
χi j(r) fi j(r)

] − 1

fi j (r)

}
, (16)

where gi j(r) = hi j(r) + 1 are the so-called radial distribution functions and we introduced
new auxiliary functions χi j(r) = hi j(r) − ci j(r). Vi j(r) refers to the pair interactions between
species i and j as presented in section 2. It may again be emphasized that the main benefit we
gain from using the modified relation (16) is closely related to the hybrid character of the latter.
Due to the fact that any closure constitutes an approximation, we in general obtain different
results for the partial and total isothermal compressibilities as calculated via either the virial or
the fluctuation route (see below), as already mentioned above. But the three mixing functions
emerging in equation (16) above and given by

fi j (r) = 1 − exp[−ζi jr ], (17)

with ζi j being the so-called self-consistency parameters, now allow us to address this problem
and to appropriately match the isothermal compressibilities. Since it is sufficient to apply a
single consistency condition only, namely the requirement of equality of the system’s total virial
and fluctuation isothermal compressibilities, the usual approach is to employ just one individual
parameter ζi j = ζ for all components. Hence, only a single mixing function fi j(r) = f (r)

remains. However, multi-parameter versions of the RY closure were nevertheless also proposed
some years ago [27], accordingly demanding the equality of all the partial compressibilities.

7
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It is easy to check that for ζ = 0 and ∞ the multicomponent PY and HNC closures,
respectively, are recovered from equation (16).2

Now, we have to address in more detail the issue of calculating the total isothermal
compressibility following the different routes. First we concern ourselves with the virial
compressibility κv

T . The total pressure P of the system in hand, including both ideal and excess
contributions, takes the form [25]:

β P = ρ − 2πρ2

3

∑
i

∑
j

xi x j

∫ ∞

0
dr r 3 V ′

i j(r) gi j(r), (18)

with V ′
i j(r) = −∂Vi j(r)/∂r being the derivatives of the different pair potentials with respect to

the inter-particle distance r . Provided the pressure pursuant to equation (18) is known, κv
T can

be obtained by differentiating with respect to the total density ρ while the partial concentrations
xi are kept fixed:

ρkBT κv
T =

[
∂(β P)

∂ρ

∣∣∣∣{xi }

]−1

. (19)

In order to evaluate the fluctuation compressibility κfl
T , we initially introduce the three

partial structure factors Si j (k). As the correlation functions and the radial distribution functions,
respectively, they also describe the structure of the system:

Si j (k) = δi j + √
ρiρ j h̃i j(k). (20)

While for the one-component case the compressibility can simply be obtained as the (k = 0)

value of the static structure factor, i.e. S(k = 0) = ρkBT κfl
T , things are a bit more

complicated for binary (or multicomponent, ν > 2) mixtures. Here, in a generalization of
the one-component situation, the compressibility can finally be written using the following
expression [28–30]:

ρkBT κfl
T = Sss(0)Scc(0) − S2

cs(0)

xcSss(0) + xsScc(0) − 2
√

xsxcS2
cs(0)

. (21)

Based on our knowledge of the partial correlation functions hi j(r) and structure factors
Si j (k) as obtained by (numerically) solving the OZ relation, equation (10), and using the RY
closure, equation (16), we can in principle completely access the thermodynamics of the system
in hand. In order to calculate the binodal lines, a very convenient quantity to consider is the
concentration structure factor Scon(k). It is a linear combination of all the partial structure
factors, whereby the corresponding pre-factors are determined by the concentrations xi of the
different species, namely:

Scon(k) = xcx2
s Scc(k) + xsx

2
c Sss(k) − 2(xcxs)

3/2Scs(k). (22)

Now, let P be the total pressure according to the above equation (18) and g(xs, P, T ) =
G(xs, N, P, T )/N the Gibbs free energy G(xs, N, P, T ) per particle. Then, the second
derivative of the former is connected to the concentration structure factor Scon(k) by means
of the sum rule [31–33]:

βg′′(xs, P, T ) ≡ β
∂2g(xs, P, T )

∂x2
s

= 1

Scon(0; xs)
, (23)

2 When using the RY closure, the correlation functions obviously—besides their inherent density dependence—
parametrically depend on the mixing parameter ζ , i.e. hi j = hi j (r; ρc, ρs, ζ ) and ci j = ci j (r; ρc, ρs, ζ ). The same
must obviously hold for all quantities deduced from these two functions. Note that we will nevertheless throughout
this paper drop both the ρi and ζ from the respective parameter lists in order not to overcrowd our notation.

8



J. Phys.: Condens. Matter 19 (2007) 076105 M Konieczny and C N Likos

where we have added the concentration xs as a second argument to Scon(k) to emphasize this
dependence. This differential equation has to be integrated along an isobar for any prescribed
value of the pressure P∗ ≡ β Pσ 3

c = const, to obtain the Gibbs free energy from the
structural data, Scon(k = 0; xs). A detailed analysis of the limiting behaviour of g′′(xs) shows a
divergence as 1/xs for xs → 0 and as 1/(1−xs) for xs → 1 [33]. In order to avoid any technical
difficulties when numerically integrating, we a priori split the Gibbs free energy g(xs) into a
term that arises from its ideal part and a remainder, which we call the excess part3, gex(xs):

βg(xs) = (1 − xs) ln(1 − xs) + xs ln(xs)

+ 3(1 − xs) ln(�c/σc) + 3xs ln(�s/σc) + βgex(xs), (24)

with the thermal de Broglie wavelengths �c,s of the colloids and the stars, respectively. Taking
the second derivative in the above equation (24) again, we obtain:

βg′′(xs) = 1

xs
+ 1

1 − xs
+ g′′

ex(xs). (25)

Thus, the ideal part of the Gibbs free energy is exclusively responsible for the appearance of
the aforementioned divergences at the integration boundaries and the modified second-order
differential equation

βg′′
ex(xs) = 1

Scon(0; xs)
−

(
1

xs
+ 1

1 − xs

)
(26)

for the excess Gibbs free energy alone is obviously free of any diverging terms. We can
therefore easily solve it numerically. Subsequent addition of the analytically known ideal term
gid(xs) = (1 − xs) ln(1 − xs) + xs ln(xs) directly yields the total Gibbs free energy per particle
that we are interested in. The two terms involving the thermal de Broglie wavelength are linear
in xs; they only provide a shifting of the chemical potentials and can be dropped.

Thermodynamic stability requires that g(xs) is convex [34]. In case we encounter some xs

region where g′′(xs) < 0 the binary mixture features a fluid–fluid demixing transition. In that
sense, equations (23) and (26), respectively, allow us to investigate the thermodynamics and
the phase behaviour of the system in hand by providing a tool to compute the Gibbs free energy
(per particle). The corresponding phase boundaries can be calculated using Maxwell’s common
tangent construction, which guarantees that the chemical potentials, μi , are the same between
both coexisting phases. Since we are in a situation where we moreover fixed the pressure
P∗ of the mixture and its absolute temperature T , all conditions for phase coexistence are
clearly fulfilled. Concretely, the common tangent construction amounts to solving the coupled
equations

g′(x I
s) = g′(x II

s ) (27)

and

g(x I
s) − x I

sg′(x I
s) = g(x II

s ) − x II
s g′(x II

s ) (28)

for the concentrations x I,II
s of the coexisting phases I and II.

In integrating equation (25) above and adding the ideal terms, one obtains the Gibbs free
energy per particle, g(xs) modulo an undetermined linear function C1xs +C0 with the constants
C1 and C0 to be fixed by appropriate boundary conditions. As is clear from equations (27)
and (28) above, such a linear term is anyway immaterial from the determination of phase
boundaries and, in practice, it can be ignored on the same grounds that the terms involving

3 The ‘excess’ part gex(xs) in equation (24), includes a term ln(ρσ 3
c ) that arises from the original ideal part but which

does not cause any divergences at the limits xs → 0 and xs → 1, which we seek to remove. Thus we readsorb it into a
redefined excess part, which can be integrated without problems.
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the thermal de Broglie wavelengths in equation (24) have been dropped. Nevertheless, the
constants C1 and C0 can be determined as follows. Taking into account that the Gibbs free
energy G(N, P, xs, T ) is an extensive function but in its natural argument list there is only one
extensive variable, namely the number of particles N , Euler’s theorem [35] asserts the function
g to have the form:

g(xs) = xsμs(xs) + (1 − xs)μc(xs). (29)

For both limiting one-component cases, i.e. if no stars (xs = 0) or no colloids (xs = 1) are
present in the system, the following relation holds true:

βg = f̂ + ρ f̂ ′ = ln(ρ) + f̂ex + ρ f̂ ′
ex, (30)

where f̂ = β F/N denotes the Helmholtz free energy per particle and f̂ ′ its derivative with
respect to the density ρ; the subscript ‘ex’ refers to the excess part of f̂ . On the other hand, f̂ ′

ex
is connected to the excess pressure Pex (as known from equation (18) above) via the equation

f̂ ′
ex = β Pex/ρ

2. (31)

Following equation (31), f̂ex can be obtained by integrating the ratio Pex/ρ
2 with respect to ρ

and applying the additional boundary condition f̂ex(ρ → 0) = 0. Once the Helmholtz free
energies for the pure colloid and PE-star systems are known in this way, the corresponding
chemical potentials μc(0) and μs(1) can be calculated and the conditions g(0) = μc(0) and
g(1) = μs(1) for any arbitrary pressure P (cf equations (29) and (30) above), yield C0 and C1.
Note that for the pure colloidal system, xs = 0, we can avoid the integration route to compute
the pressure by using the accurate Carnahan–Starling expressions for hard spheres [36], which
also turn out to be consistent with the one calculated from the Rogers–Young route, based on
equation (18) and our results for the radial distribution function g(r).

Note that when crossing the spinodal line in the density plane the long wavelength limits
of the partial structure factors, Si j(k → 0), take non-physical values. This behaviour expresses
the system’s physical instability against a possible fluid–fluid phase separation. Therefore it is
no longer feasible to (numerically) solve the integral equations once we reached the spinodal; in
fact, integral equation theories themselves break down before the spinodal is reached, yet after
the binodal [37]. Consequently, depending on the total pressure and above a certain threshold
value of the same, P > Pthr, the concentration structure factor Scon(0; xs) is unknown over
some interval �xs(P). Hence, we need to appropriately interpolate Scon(0; xs) in order to
obtain the second derivative of the Gibbs free energy per particle for all 0 � xs � 1 and, in
this way, to allow for the integration of the differential equations (23) or (26), respectively.
Along the lines of [33], we perform this necessary interpolation using cubic splines. In order
to illustrate the whole procedure, figure 3 shows the function g′′(xs) as computed from the OZ
equation together with its cubic spline interpolation for a representative parameter combination
and two different pressures. Moreover, in figure 4, we plotted the corresponding Gibbs free
energy g(xs) for the lower one of these pressures. In addition, the inset depicts Maxwell’s
common tangent construction used to compute the star concentrations for the coexisting phases.

It may be emphasized that the results for the binodal do not depend on the concrete
interpolation scheme, at least as long as the numerical methods used to solve the OZ relation are
able to precisely reach the spinodal, i.e. the points where the structure factors diverge for k → 0.
Admittedly, this is not always strictly the case since the numerical schemes we employed to
calculate correlation functions and corresponding structure factors, respectively, may break
down slightly before the spinodal is reached. Accordingly, small inaccuracies induced by the
interpolation procedure arise which grow with increasing width of the gap region �xs(P), or
to put it in other words, with increasing pressure P , i.e. if we move away from the critical

10
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Figure 3. Examples of the second derivative of the Gibbs free energy per particle, g′′(xs), plotted
against the star concentration xs for stars with functionality f = 30, PE-star–colloid size ratio
q = 0.2, and two different pressures P∗ = β Pσ 3

c . Symbols are calculated from the OZ relation,
lines were obtained by cubic spline interpolation. Note that the xs interval where we are not able
to numerically solve the integral equations grows distinctly upon increasing the pressure, i.e. as we
move away from the critical point. Moreover, the plot illustrates the limiting behaviour of g′′(xs) as
1/xs for xs → 0 and as 1/(1 − xs) for the opposite case xs → 1, respectively.

Figure 4. Gibbs free energy per particle g(xs) versus the star concentration xs, plotted for f = 30,
q = 0.2, and P∗ = 50.0. The curve was obtained via integrating the interpolated function g′′(xs)

twice according to the procedure delineated in the main text, whereby we subtracted an arbitrary
linear function afterwards. The inset shows g(xs) with an differently scaled xs-axis in order to
highlight the concave parts of the function and to show Maxwell’s common tangent construction.

point. As long as the aforementioned interval where no solution of the integral equations can
be found is rather small, we expect the interpolation to be reliable, while for higher pressures
the received binodals are of more approximate character. Nevertheless, they still show a very
reasonable behaviour. We are going to discuss the results for the phase diagrams in detail in
section 4.3.
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4. Results

4.1. Low colloid-density limit

Based on the radial distribution functions g(r) as obtained by the OZ relation closed with the
RY closure, equations (10) and (16), we may map our two-component mixture onto an effective
one-component system of the colloids alone. In doing so, the PE-stars are completely traced
out, resulting into an effective colloid–colloid interaction where the pure hard-sphere potential
is masked by additional depletion contributions originating in the presence of the stars and the
forces they exert on the colloids. To put it in other words, the colloid–PE-star interactions
cause spatial correlations of the PE-star distribution in the vicinity of the colloids, and it is
exactly these correlations that determine the resulting shape of the depletion potential. Note
that the latter in general parametrically depends rather on the chemical potential of the PE-
stars μs or, equivalently, the density ρr

s of a reservoir of stars at the same chemical potential
μr

s = μs, than on their density ρs in the real system. Hence, it is in principle more convenient
to switch to a reservoir representation (ρc, ρ

r
s) of the partial densities instead of the original

system representation (ρc, ρs) when considering such effective interactions. Clearly, if the
colloid density ρc takes finite values, it must hold ρs �= ρr

s . But since we will consider the
limiting case of low colloid densities ρc → 0 only in what follows, we have ρr

s = ρs again,
i.e. reservoir and system representation of the partial densities coincide.

Concretely, the desired mapping4 can be achieved by a so-called inversion of the full, two-
component results of the integral equations in the low colloid-density limit ρc → 0 [33, 38–41].
It can be shown from diagrammatic expansions in the framework of the theory of liquids [23]
that in this limit the pair correlation function for any fluid reduces to the Boltzmann factor
g(r) = exp[−βv(r)]. Here, v(r) denotes the pair potential the fluid’s constituent particles
interact by. According to this relation, the effective colloid–colloid potential Veff(r), depending
parametrically on both the partial colloid and star densities ρc and ρr

s = ρs, is obtained as
follows:

βVeff(r) = lim
ρc→0

ln
[
gcc(r; ρc, ρ

r
s)

]
. (32)

Figure 5 shows examples for the effective colloid–colloid interaction Veff(r) for different
functionalities f of the stars, partial star densities ρr

s = ρs and PE-star–colloid size ratios q .
As one can see from the plots, for distances r > σc the resulting depletion interaction mediated
by the stars is attractive and features a slightly oscillating behaviour, while for inter-particle
separations r � σc the bare hard-sphere repulsion remains. In particular, figure 5(a) illustrates
that the addition of PE-stars to the mixture results in both a significant increase in the depth
of the attractive potential well and a further enhancement of the aforementioned oscillations
but does in no way affect the range of the attraction. As can be read off from figure 5(b), the
latter is determined by the size ratio q alone and grows linearly with the diameter of the stars.
Furthermore, there is a measurable, but weak, dependence of the interaction strength on the
functionality of the PE-stars: the higher the arm number f the stronger becomes the effective
attraction between two colloids (cf figure 5(c)). All these trends are in perfect agreement with
the common understanding of the physical mechanisms leading to the appearance of such an
effective attraction: due to a depletion of the PE-stars in the spatial region between a pair

4 Note that the most accurate way to compute effective interactions between two colloidal particles in the presence of
(smaller) PE-stars is to employ direct computer simulations [33, 38, 42–44]. Another way to the depletion potential
would in principle be offered by Attard’s so-called superposition approximation (SA) [45]. But since we want to
perform the mapping onto an effective one-component system in order to gain some qualitative understanding of the
physics of our system only but stick to the full two-component picture to quantitatively calculate the binodals of the
mixture, we turn down such alternative methods within the scope of the present paper.
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Figure 5. Effective colloid–colloid depletion potentials Veff(r) as obtained by an inversion of the
OZ relation. See the text for details concerning the procedure. We have investigated the influence
of (a) the partial star density ρr

s = ρs, (b) the PE-star–colloid size ratio q and (c) the functionality
of the stars f on the functional form of the interaction potential. It is evident from the plots that the
presence of the stars induces an attraction between the colloids in addition to their bare hard-sphere
repulsion which takes over for distances r � σc.

of colloids, and dependent on the colloids’ mutual distance, they are hit asymmetrically by
the stars from the inside and the outside. Consequently, the unbalanced osmotic pressure
pushes the colloids together. Clearly, the absolute value of this force must grow with increasing
star density ρs, simply because there are more collisions between PE-stars and colloids. For
higher functionalities f , the colloid–PE-star cross interaction becomes more repulsive (see
section 2.2), i.e. the stars push the colloids harder, thus also leading to a strengthened effective
colloid–colloid attraction. And finally, the diameter of the PE-stars determines whether or not
they fit into the spatial region between a pair of colloids for a given distance of the two. Hence,
the size ratio q controls whether the stars are expelled from the said region of space, or to put
it in other words, for what scope of inter-colloidal separations depletion actually takes place.
Accordingly, the range of the effective force can be altered by changing q .

The occurrence of oscillations of the effective potential Veff obviously means that the
attractive minimum is followed by a repulsive barrier whose height is set by the concentration of
PE-stars in the mixture (see above). In particular, it grows upon addition of stars to the system
and such behaviour could, in the case of distinctly high and broad maxima, in principle lead to
micro-phase separation, i.e. cluster formation [46–51]. But for the physical system we examine
and the range of parameters we investigate, the barrier remains anyway rather low and narrow.
Micro-phase separation is therefore not likely to happen. Instead, the type of effective colloid–
colloid attractions in hand, i.e. an attractive potential valley together with a nearly vanishing or
at least less-pronounced repulsive barrier, forces the system to develop long-range fluctuations
upon an increase of the PE-star concentration, consequently favouring the possibility of a
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fluid–fluid demixing transition of the two-component mixture. Such behaviour is frequently
observed in, for example, colloid–polymer mixtures [52–54]. Thus, when considering the phase
behaviour of our system by calculating its binodals, we expect to find evidence for macro-phase
separation. This supposition will be endorsed by the results of the following section, too.

4.2. Structure of the mixture

Before switching over to a presentation of the demixing binodals as obtained via the procedure
described in detail in section 3 of this paper, i.e. initially calculating the Gibbs free energy
g(xs) with both the temperature T and the pressure P kept fixed and subsequently identifying
the sought-for coexisting fluid phases using Maxwell’s common tangent construction for the
concave parts of that function (see, in particular, figures 3 and 4), it is useful to study partial
pair correlation functions gi j(r) and corresponding structure factors Si j (k) (i, j = c, s) first.
Since these quantities completely describe the pair structure of the system, we are able to gain
detailed insight into the physics and phase behaviour of the mixture and to discover, in addition
to the findings of the previous section 4.1, more evidence that it is reasonable to expect a
mixing–demixing transition.

Figure 6 shows the partial radial distribution functions gi j(r) for typical parameters,
namely a colloid–PE-star mixture with a size ratio of q = 0.3 and the PE-stars having f = 30
arms each. We show results for different mixture compositions, i.e. varying partial densities
for both species as indicated in the plots. Figures 6(a) and (b), on the one hand, depict the
decisive length scales of the problem or, equivalently, the typical ranges of the underlying pair
potentials as set by the sizes of colloids and PE-stars, respectively. The distinct height of the
colloid–colloid contact value gcc(σc) and its further rise upon increasing the PE-star density
(not shown in our figures) is an obvious manifestation of the mainly attractive character of the
effective colloid–colloid interactions. In this respect, we again refer the reader to section 4.1
and, in particular, equation (32) mathematically describing the inversion procedure for the OZ
relation. On the other hand, when taking a closer look at the whole set of pair correlation
functions we find various signs pointing towards the supposable occurrence of a demixing
transition. The main peaks of both gss(r) and gcc(r) gain in height when adding colloids to the
system, while the peak height of the cross-correlation function gcs(r) remains essentially the
same (see figures 6(a), (b) and (d)). In addition, figures 6(c) and (d) show an enhancement in
the star–star pair correlations and an concurrent depletion in the colloid–star correlations for
raising colloid densities. The intervals of distances affected are remarkably broad; both the
range of the enhancement and the depletion are of the order of the colloid size, not the much
smaller star size. Altogether, these features show the tendency of colloids as well as stars to
seek the spatial proximity of their own species while avoiding the other one, and we may expect
macroscopic regions rich in the one and poor in the other species to be formed provided the
partial densities, in particular of the colloids, are sufficiently high.

Figure 7 illustrates the typical shape of the partial structure factors Si j (k). Here, we
chose the parameters as follows: the PE-star functionality is f = 18, we set the size ratio
to q = 0.2, fixed the density of the stars as ρsσ

3
s = 0.12 and considered several values of the

colloidal density ρcσ
3
c . When comparing the three main plots of the figure, the first finding

is that the locations of the different Lifshitz lines in density space strongly vary. These lines
mark the cross-over of the respective structure factors between a regime where they display
a local minimum in the long wavelength limit k → 0 and a region where the behaviour
changes to developing a local maximum for the same k-values. While for the given number
of stars in the system the star–star Lifshitz line is obviously immediately crossed for practically
arbitrary low colloid concentrations (figure 7(b)), we need an noticeably increased partial
colloid density lying in the range of about ρcσ

3
c ≈ 0.25 . . . 0.5 for the colloid–star structure

14



J. Phys.: Condens. Matter 19 (2007) 076105 M Konieczny and C N Likos

Figure 6. Partial radial distribution functions gi j (r) (i = c, s) for PE-stars with f = 30 arms,
star–colloid size ratio q = 0.3, fixed PE-star density ρsσ

3
s = 0.27 and colloidal densities of

(a) ρcσ
3
c = 0.05 or (b) ρcσ

3
c = 0.29. For the same value of the stars’ partial density, the

remaining two parts of the figure illustrate the detailed shape and the ρc dependence of (c) the
star–star correlation function gss(r) and (d) the cross-correlation function gcs(r). For an in-depth
discussion and interpretation of the results, we refer the reader to the main text.

factor to experience such cross-over (figure 7(c)). In the case of the colloid–colloid structure
factor, the corresponding values of the colloid density are even higher, about ρcσ

3
c ≈ 0.7

for the parameters used here (figure 7(a)). Another indication of the demixing transition we
are searching for within the scope of this paper and that is expected to occur upon adding
more and more colloids and stars to the binary mixture is the tendency of all partial structure
factors to diverge in the aforementioned long wavelength limit, i.e. Scc(k → 0) → +∞,
Sss(k → 0) → +∞ and Scs(k → 0) → −∞, thus demonstrating that we approach the
spinodal line. The inset in figure 7(b) was included in order to again demonstrate the huge
difference in the structural length scales of the two species present in the mixture. The pre-
peak in the cross structure factor Scs(k) is without any direct physical interpretation, while
pre-peaks in the intra-species structure factors would evince micro-phase separation [47–51].
Since the latter peaks are completely absent in our case, we may once more conclude that the
system is expected to macro-phase separate instead of forming clusters.

Finally, figure 8 depicts the q dependence of the cross structure factors for f = 30 and
two different values of the colloid density ρcσ

3
c (main plot and inset). For both size ratios

investigated, the star densities ρsσ
3
s are chosen to be almost the same5. As is obvious from the

5 They are not exactly the same since such results are not systematically available due to the fact that we originally
solved the OZ relation together with the RY closure for points in the density plane where the star density takes ‘smooth’
values when scaled with respect to the colloidal diameter σc, not their own diameter σs.
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Figure 7. Examples of the partial structure factors (a) Scc(k), (b) Sss(k) and (c) Scs(k) for PE-star
functionality f = 18, size ratio q = 0.2, fixed density of the stars ρsσ

3
s = 0.12 and several values

of the colloidal density ρcσ
3
c , i.e. different mixture compositions. Please note that the line styles in

the main plot of part (b) refer to the same parameters as explained in the legends of parts (a) and
(c), respectively. The inset in (b) addresses a comparison between the colloid–colloid and the star–
star structure factors for the aforementioned star density and a typical value of the colloid density
(indicated in the plot) and thereby illustrates the huge difference in the structural length scales of
the two species.

plots, a change in q only affects the peak positions and the depth of the local minimum for
k → 0, but there is no significant influence on the peak heights of the functions. This is in
agreement with the findings for the q dependence of the effective colloid–colloid interactions
(see figure 5), and essentially means that the size ratio q is crucial for determining the typical
structural length scales, but hardly for how pronounced this structure is.

4.3. Fluid–fluid phase equilibria

After having found plenty of evidence in our analysis so far for a mixing–demixing transition
taking place for certain ranges of partial densities ρiσ

3
i , we finally come to a more quantitative

description based on the corresponding binodals obtained as explained above. In figure 9
we show the obtained demixing binodals for size ratios q = 0.2 (figure 9(a)) and q = 0.3
(figure 9(b)) and for different PE-star functionalities f , as denoted in the legends. In
addition, we connected some of the point pairs used to compute the binodals and representing
coexisting colloid-rich and colloid-poor phases by tie lines. Concerning the mutual positions
of the binodals in the density plane, it can be seen that they shift towards higher PE-star
concentrations upon increasing the size ratio q and/or decreasing the PE-star functionality f .
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Figure 8. Comparison of the cross structure factors Scs(k) for f = 30 and the two different size
ratios investigated, q = 0.2 and 0.3. The PE-star partial densities were chosen to be almost the
same in both cases, i.e. ρsσ

3
s = 0.27 and 0.24, respectively. The corresponding colloid densities are

ρcσ
3
c = 0.29 (main plot) and ρcσ

3
c = 0.05 (inset). Upon varying the size ratio, the peak positions

shift and the (k = 0) values of the partial structure factors shown change significantly while there
is no remarkable effect on the height of the different peaks.

This characteristic behaviour is in agreement with previous studies of binary mixtures of
colloids and neutral polymer stars [33]. The filled triangles in figure 9 denote rough estimates
for the positions of the respective critical points determined graphically by taking the tie lines
into account. The critical points move towards slightly lower colloid densities when lowering
the arm number of the PE-stars, whereas altering the size ratio has no significant effect.

The star densities ρsσ
3
s that bring about a demixing instability are typically higher for the

case q = 0.3 than for the case q = 0.2. This looks counterintuitive at first sight, since one
expects that larger PE-stars will destabilize the mixture earlier. In order to put the numbers
in their appropriate context, it is useful to employ the picture of the effective colloid–colloid
potential, which includes a star-induced attraction. Here, the range and depth of this attraction
steer the occurrence of the demixing binodal, which is equivalent to a separation between a
colloidal fluid and a colloidal gas. The natural length scale in this picture is the colloid diameter
σc; concomitantly, the physically relevant density in making comparisons between the q = 0.2
and the q = 0.3 cases should be scaled with the colloid size: ρsσ

3
c = q−3ρsσ

3
s . It can be easily

seen that the additional prefactor q−3 renders the rescaled star densities for q = 0.3 indeed
lower than the ones for q = 0.2, in agreement with intuitive expectations.

The volume terms for the integrated out counterions [55–57] do not affect the phase
boundaries, since under the assumption of full absorption in the stars’ interiors, they are simply
proportional to the number Ns of the latter [11] and thus they cause a trivial shift of the stars’
chemical potential, without affecting the osmotic pressure of the solution [58]. Finally, we
mention that we did not consider the competition between the demixing binodals and the
crystallization of the colloids. The investigation of the solid states of the system lies beyond
the scope of this work. The trends found for the f and q dependences are comparable to
the colloid–star polymer case mentioned above. Although the underlying pair potentials are
different to a certain degree, a closer inspection to the full phase diagrams in [33] can give
hints regarding the stability of the binodals against pre-emption by the freezing lines. Provided
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Figure 9. Demixing binodals calculated according to the procedures introduced in the main text for
(a) q = 0.2 and (b) q = 0.3, and different values of the PE-star functionality f . In order to illustrate
the coexisting colloid-poor and colloid-rich phases, we additionally show several tie lines. In this
connection, please note that we have in fact used many more such point pairs in order to obtain
the binodal lines and not only the shown ones. Based on the full sets of coexisting fluid phases we
computed, we made rough estimates for the positions of the respective critical points in the ρc–ρc

plane, represented by the filled triangles.

that the positions of the freezing lines are not too different here, it seems to be reasonable to
assume, based on such a comparison, that our demixing lines will survive at least for the larger
size ratio between stars and colloids. Nevertheless, the existence of a demixing binodal, even
in the case that the latter is pre-empted by crystallization, has important consequences for the
time scales involved in the dynamics of crystallization [59, 60].

5. Summary and conclusions

We have put forward a coarse-grained description of mixtures between neutral, spherical,
hard colloids and multi-arm polyelectrolyte stars of size smaller than the colloidal particles.
Effective interactions between the constituent particles have been employed throughout,
allowing for a mesoscopic description that leads to valuable information on the structure
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and thermodynamics of the two-component mixture. The cross interaction, which has been
derived in this work, is sufficiently repulsive to bring about regions of instability in the phase
diagram and leading thereby to macroscopic, demixing phase behaviour. This, in turn, can be
rationalized by means of the depletion potentials between the colloids, which are induced by
the stars, and feature attractive tails akin to those encountered in the usual colloid–polymer
mixtures.

The form of the cross interaction plays a crucial role in determining stability and can,
by suitable tuning, completely change the behaviour of the mixture from macroscopic phase
separation to micro-phase structuring with a finite wavelength. In this respect, a very promising
direction of investigation is to allow for the colloids to carry a charge opposite to that of the
arms of the polyelectrolyte stars. Preliminary results already indicate a rich variety of resulting
complexation morphologies between the two constituents [61]. A detailed investigation of the
complexation characteristics and the morphologies of the ensuing macroscopic phases is the
subject of ongoing work.
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